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Abstract

This paper presents a thermo-hydro-chemical model for concrete at high temperatures. Non-linear phenomena, heat

and mass transfers, evolution of the phases constituting the porous medium are taken into account in a full three phases

coupled analysis. The proposed model does not take into account mechanical aspects, i.e. the solid skeleton is con-

sidered as rigid. An experimental set-up and a numerical simulation are also presented. A hollow cylinder has been

heated up to 523.15 K (250 �C) on the internal side and submitted to gas pressure/temperature measurements. A

numerical simulation of the cylinder has been performed, showing a good correlation with the experimental obser-

vations.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of a porous medium (i.e. concrete)

subjected to high temperatures is of great interest in civil

engineering. Nuclear plants/waste storage structures [1],

safety evaluations during fire in tall buildings and the

recent fires that have occurred in European tunnels have

focused the attention of many researchers [2–4].

With high temperatures, many non-linear phenom-

ena concerning the different phases constituting the po-

rous media must be taken into account. Many authors

have highlighted the necessity of a coupled model [5–8]:

not only heat conduction and vapour diffusion must be

considered, but also liquid water flow due to pressure
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gradients and capillary effects (due to interface curvature

inside pores produced by surface tension that alters the

equilibrium between liquid water and gas).

This paper focuses mainly on the thermo-hydro-

chemical model presented in [9–12] taking into account

thermal kinetics and three full phases. Mechanical as-

pects are not considered i.e. mechanical damage is

considered not to have a primary importance.

The porous structure of concrete is subjected to

strong alterations when exposed to high temperatures.

Chemical decomposition of the cement paste (i.e. de-

hydration) introduces in concrete pores free liquid water

and modifies microstructure geometry and transport

properties [10]. Moreover during the dehydration pro-

cess, considerable amounts of heat are consumed [13].

Permeability has a sharp increase above 378.15 K [13]

i.e. when dehydration is considered to begin. Concrete is

an hygroscopic material with a considerable portion of

the pores belonging to the lower range of mesopores

[13], meaning that during air/vapour diffusion, Knudsen

effects must be considered [14]. Physical properties of
ed.
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Nomenclature

ac, bc capillary curve coefficient [MPa], [–]

AT, Ap permeability law coefficients [–]

Av, Bv effective diffusion coefficients [–]

C unit energy constants [J kg�1 K�1]

D gas diffusivity [m2 s�1]

d water dehydration per unit volume [kgm�3]

F mass flux per surface unit [kgm�2s �1]

g structure coefficient [–]

DH specific enthalpy of evaporation [Jmol�1]

H Heaviside function [–]

h enthalpy per unit mass [J kg�1]

k intrinsic permeability [m2]

kr relative permeability [–]

M molar mass [kgmol�1]

m mass per unit volume [kgm�3]

n relative permeability constant [–]

nr surface tension coefficient [–]

p pression [Pa]

q heat flux per unit of surface of skeleton

[Wm�2]

R universal gas constant [Jmol�1 K�1]

RH relative humidity [–]

Sl liquid saturation [–]

T temperature [K]

t time [s]

u internal energy per volume unit [Jm�3]

up internal energy per mass unit [J kg�1]

Greek symbols

a heat exchange coefficient [Wm2 K�1]

v average curvature [m�1]

d dehydration energy of concrete per unit

volume at state 0 [J kg�1]

g viscosity [kgm�1 s�1]

k thermal conductivity [Wm�1 K�1]

/ porosity [–]

q density [kgm�3]

r surface tension [Nm�1]

s characteristic time of dehydration [s]

Subscripts and superscripts

0 reference state

_xx time derivative of x variable

1 ambient

p liquid water, vapour water, dry air

x x variable tensor

a dry air

ag aggregate

an anhydrous

atm atmospheric

c capillary

cr critic

eq equilibrium

g gas mixture

hyd hydrate

l liquid water

sat saturated

v vapour water

w total water
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fluids (liquid water and moist air) saturating the medium

are also strongly temperature dependent [15].

The presented model takes into account all the

mentioned phenomena, typical of concrete at high

temperatures, and is valid below the critical point of

water (i.e. 647.15 K). Above this limit, water does not

exist as a liquid, capillary pressure loses its meaning and

an extension of the theory is required [5,16,17].

The first part of the paper consists of a presentation

of the coupled hygrothermal model for concrete at high

temperatures: the original and the most significative

equations of the model are here presented while the full

algebraic-differential system is given in the appendix

together with the whole set of variables, the constants

used in the formulas and the values of the variables at

reference state. In the next section we present how this

model can be numerically handled through the finite

volume method. In the following an experimental set-up

is presented: a hollow cylinder has been heated up to the

temperature of 523.15 K and its temperature/gas pres-
sure fields have been monitored. Numerical results are

then presented and discussed. Finally a comparison be-

tween the numerical results of the simulation and the

experimental observations is given.
2. The mathematical model

The mathematical model used in the analysis con-

siders concrete as a multiphase porous material, where

the solid skeleton is filled with liquid water and gas. The

model consists of three conservation equations (mass

conservation of dry air, mass conservation of water,

energy conservation of the whole medium) completed by

an appropriate set of constitutive and state equations as

well as some thermodynamic relationships.

The main frame of the mathematical model is based

on the model presented by Mainguy et al. [12], com-

pleted by an appropriate set of equations for the de-

scription of concrete dehydration and the evolution of
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its properties with temperature. The validation of the

model is obtained neglecting these added terms. It is

therefore possible to reproduce a concrete drying pro-

cess; the results obtained are comparable to [12,18].
2.1. Microstructure description

In porous medium pores, water is usually present as a

condensed liquid which, thanks to the surface tension, is

separated from its vapour by a concave meniscus (cap-

illary water). Capillary pressure is defined as the differ-

ence between gas pressure (i.e. air pressure pa and

vapour pressure pv) and the liquid phase pressure pl:

pc ¼ pa þ pv � pl ð1Þ

The equilibrium equation between liquid water and gas

is given by means of the well-known Laplace equation:

pg � pl ¼ 2rðT Þv ð2Þ

where v represents the curvature of the interface between

the capillary water and the gas phase inside the pores of

the medium. Due to the curvature, the equilibrium va-

pour water pressure differs from the liquid water pres-

sure and the relationship can be obtained by means of

the Kelvin equation. Given the hypotheses of incom-

pressible liquid water and vapour as a perfect gas, the

equation can be expressed as a function of the saturation

pressure of pure water (see Eq. (M-11)):

pl ¼ psatðT Þ þ
qlRT
Ml

ln
pv

psatðT Þ

� �
ð3Þ

Meniscus curvature is therefore dependent on liquid

water content, i.e. liquid saturation Sl, and vice versa.

Moreover the surface tension of equilibrium between

liquid water and gas mixture is temperature-dependent,

meaning that changing the temperature, the equilibrium

condition changes.

The capillary curve (i.e. the curve pcðSl; T Þ) is clearly
fundamental for the realistic modelling of hygrothermal

behaviour of concrete. It gives the pore size distribution

of the porous media relating the size of the largest pore

filled to the actual water content. The relationship must

be determined through sorption tests at different tem-

peratures. The following equation between capillary

pressure and saturation for ordinary concrete and high

performance concrete has been assumed:

pc ¼
rðT Þ
rðT0Þ

acðS�bc
l � 1Þ 1� 1

bcð Þ ð4Þ

where ac and bc are concrete coefficients determined

experimentally from the porosimetry curve [19] and the

surface tension is defined in Eq. (C-2).
2.2. Mass conservation

Masses per unit volume of skeleton for air, vapour

and liquid water are defined as follows:

ma ¼ qa/ð1� SlÞ ð5Þ

mv ¼ qv/ð1� SlÞ ð6Þ

ml ¼ ql/Sl ð7Þ

where qpðpp; T Þ is the density of the p phase (see Eqs.

(C-19)–(C-21)). Given the hypotheses of perfect gases,

qa and qv depend on pressure and temperature (see Eqs.

(C-19) and (C-20)).

Water mass conservation equation is particularly

important. Due to dehydration, an important volume of

free water is introduced in concrete in particular below

573.15 K. This quantity is taken into account through a

water source term: the dehydration per unit volume d.
The classical equation of water conservation must be

therefore completed by this source term:

_mmw � _dd þ divðF l þ F vÞ ¼ 0 ð8Þ

where mw is total water mass per unit volume of skele-

ton, F lðT ; Sl; pg; plÞ and F vðT ; Sl; pv; pa;/Þ are respec-

tively liquid water and vapour water mass fluxes per unit

of skeleton surface (see Eqs. (C-5) and (C-6)).

The set of mass conservation equations is finally

completed by the air mass conservation equation:

_mma þ divðF aÞ ¼ 0 ð9Þ

where ma is the air mass per unit volume of skeleton,

F aðT ; Sl; pv; pa;/Þ is the air mass flux per unit of skeleton

surface (see Eq. (C-4)).

The modification of the cement paste and the ag-

gregates produces strong modification on concrete mi-

crostructure. As the cement paste is exposed to

increasing temperatures, the following phenomena can

be observed:

• Up to 378.15 K (i.e. 105 �C), free water is expelled; if
heating is slow enough, at the conventional tempera-

ture of 378.15 K free water is considered as no longer

present in concrete, otherwise this phenomena can

continue up to about 500 K [20].

• After 378.15 K hydrates start the decomposition into

anhydrous and water. In particular, calcium silicate

hydrate (CSH) transforms into water and calcium hy-

droxide Ca(OH)2. Up to 573.15 K the dehydration of

CSH produces an important mass loss and strong al-

terations in concrete microstructure.

• After the temperature of 573.15 K, mass and water

loss are less important, though the decomposition

of hydrates continues (e.g. decomposition of calcium

hydroxide at 573.15 K). These phenomena are not

concerned in the proposed analysis; moreover above
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the temperature of 647.15 K water does not exist any-

more as a liquid, and an extension of the model is re-

quired [21].

The variable d is here proposed as an experimentally

determined variable. It is important to observe that de-

hydration is not an instantaneous process and it needs

some time to take place. Its evolution has been consid-

ered through the following formula [9,10]:

_dd ¼ � 1

s
ðd � deqðT ÞÞ ð10Þ

which takes into account the asymptotic evolution of

dehydration through s, characteristic time of mass loss,

and deq the water mass created at the equilibrium at the

temperature T (see Eq. (C-22)).

Water production and dehydration of concrete have

a strong influence on transport phenomena. It is rea-

sonable to suppose that these phenomena are therefore

connected to the variable d. Schneider and Herbst [22]

showed also that increasing temperature produces a

change in porosity: this dependance is here given

through the variable d. The evolution of porosity

changes the geometry of the microstructure (i.e. the void

space) but does not affect the hypothesis of rigid skele-

ton (i.e. the neglecting of mechanical aspects). In the

presented model, an experimental relationship proposed

by [9] and [10], taking into account the Le Chatelier

contraction [23], is retained:

/ ¼ /0 þ 0:72 � 10�3d ð11Þ
2.3. Energy equations

Dehydration takes some time to take place, and its

kinetics is important especially during the transitory

phase. Starting from a reference state at ambient tem-

perature T0, we denote m0
an and m0

hyd the mass per volume

unit of anhydrous and hydrates at the reference state,

and man and mhyd at the actual state. man and mhyd can be

expressed as a function of d given the dehydration

chemical reaction. It is normally assumed that the hy-

dration of 100 g of cement requires 20 g of water [23];

the following expression can be therefore written:

mhyd ¼ m0
hyd � 6d ð12Þ

man ¼ m0
an þ 5d ð13Þ

Internal energy per volume unit uðT ; pa; pv;/; SlÞ can be

defined summing the energies of all concrete compo-

nents (air, vapour water, liquid water, hydrates, anhy-

drous and aggregates):

u ¼ mauaðT Þ þ mvuvðT Þ þ mlulðT Þ þ mhyduhydðT Þ
þ manuanðT Þ þ maguagðT Þ ð14Þ
where up represent the internal energy per mass unit of

the p phase. Substituting Eqs. (12) and (13) into Eq. (14)

we obtain the final form for energy equation:

u ¼ mauaðT Þ þ mvuvðT Þ þ mlulðT Þ þ ðm0
hyd � 6dÞuhydðT Þ

þ ðm0
an þ 5dÞuanðT Þ þ maguagðT Þ ð15Þ

This expression requires the knowledge of the internal

energy of every phase at the reference state. These values

cannot be directly measured, though it is possible to

obtain a relationship among them (see Eq. (C-17)).

The energy equation takes into account the energetic

phenomena related to water evaporation as well as de-

hydration i.e. the main phenomena occurring in concrete

when temperature raises.

If evaporation occurs, water vapour mass Dmv is

created and the variation of internal energy is as follows:

Du ¼ DmvðuvðT Þ � ulðT ÞÞ ð16Þ

When dehydration Dd occurs, free water is released

inside concrete. Being concrete temperature higher than

the boiling point, the free water released transforms

partly into liquid water (Dmw) and partly into vapour

water (Dmv); internal energy variation is as follows:

Du ¼ DmvuvðT Þ þ ðDd � DmvÞulðT Þ � 6Dduhyd þ 5Dduan

ð17Þ

Finally energy evolution is taken into consideration

through a classical conservation equation:

_uuþ divðhaF a þ hvF v þ hlF l þ qðT ÞÞ ¼ 0 ð18Þ

where qðT Þ is the heat flux per unit of surface of material

(see Eq. (C-7)) and hpðpp; T Þ is the enthalpy per unit

mass of the p phase (see Eq. (C-3)).

2.4. Initial and boundary conditions

For model closure it is further necessary to define the

initial and boundary conditions. The initial state speci-

fies the variables of the problem at t ¼ 0 giving the initial

conditions required for the solution of the differential-

algebraic system:

T ¼ T0 ð19Þ

p0a þ p0v ¼ p0g ð20Þ

p0v ¼ RH� psatðT0Þ ð21Þ

d ¼ d0 ð22Þ

/ ¼ /0 ð23Þ

where T0, p0g, d0, /0 are given in the annexe and RH is the

relative humidity. The initial values for the remaining

variables are calculated by substitution in Eqs. (M-5)–

(M-11). Reference values are specified in the Appendix
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A. Concerning boundary conditions it is necessary to fix

some conditions for gas pressure and temperature. Gas

pressure has been fixed on both cold and heated surface

(first kind or Dirichlet’s boundary conditions):

pa þ pv ¼ p0g ð24Þ

On the cold side the heat convected from the surface

of concrete is given by [10] (third kind, or Cauchy’s

mixed boundary conditions):

qðT Þn ¼ aðT � T1Þ ð25Þ

where T1 ¼ 293:15 K is the temperature in the far field

of undisturbed conditions, a is the exchange coefficient

and n is the vector normal to the surface. Finally, on the

internal face the thermal load has been imposed:

T ðtÞ ¼ T0 þ _TT t ð26Þ

where _TT ¼ 5 K/h is the heating velocity. The discreti-

zation of the boundary conditions is required on the

border elements. The nodes are at the interface porous

media-external environment and the control volumes

have been reduced to half size the internal volumes.
3. Results and discussion

3.1. The experimental set-up

The experiment has been performed on a hollow

cylinder heated from the internal side, equipped with

temperature and pressure sensors for the monitoring of

the behaviour of concrete.

The cylinder (Fig. 1) is 1.5 m in height with an in-

ternal radius of 0.25 m and an external of 0.55 m. The

cylinder dimensions have been chosen aiming at repro-

ducing a real structure e.g. a wall of 30 cm of thickness.

The concrete used in the analysis is an ultra high

strength concrete of M100 type whose general charac-

teristics at reference state are presented in [4]. The in-

fluence of permeability on concrete behaviour and on all

transport phenomena is well known: following the guide

lines proposed in [24], permeability has been measured

at the reference temperature T0 by means of a Cembu-

reau permeability apparatus and its value is equal to

2· 10�17 m2.

Concerning temperature measurements it has been

used a standard thermocouple of type K e.g. [4] or [9].

For what concerns the monitoring of gas pressures,

the bibliography proposes a wide variety of sensors (e.g.

[4]). The main problem of pressure gauges is related to

their dimensions and to the influence they have on the

measure itself of gas pressure. The sensor is an external

element to concrete and constitutes a local discontinuity

in the behaviour of concrete. It is therefore important to

use sensors as small as possible taking also into account
their reliability in severe conditions i.e. high tempera-

tures. Another problem related to pressure sensors is

their correct positioning inside concrete for avoiding the

measure of false pressure values. Generally speaking it is

not possible to verify the correctness of positioning a

priori: only the analysis of the obtained results can give

some additional information.

In our analysis it has been used a cylindrical sensor

type of 3 cm in height and 1.5 cm in diameter. Owing to

their high cost only four pressure sensors have been used

(placed at 3, 9, 16 and 25 cm from the heated surface).

The gauge at 9 cm has been excluded from the

analysis given the fact that the measured pressure cor-

respond to the vapour saturation pressure i.e. probably

due to the formation of an air sack on the head of the

sensor during its implantation which probably produced

a ‘‘pressure cooker’’ effect.

The cylinder has been heated on the internal face up

to the temperature of 523.15 K, with a 5 K/h velocity.

The heat load has been therefore applied starting from

an ambient temperature of 293.15 K and the final re-

quired temperature has been held for 30 days. The ex-

ternal face could freely exchange heat with the external

environment. Day–night cycles had a non-negligible in-

fluence during the heating of the cylinder especially

during the early phase of heating (Fig. 2). The gauges

have been monitored during the whole test and the re-

sults registered regularly.

3.2. Numerical results

3.2.1. Numerical method

The hollow cylinder has been discretized using a fi-

nite volume scheme. Using the axial symmetry of the
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problem, the cylinder has been represented through its

radius i.e. fluxes are considered to take place only in

radial direction. The study has been therefore reduced to

the study of a thin slice taken from the middle of the

cylinder, switching from a 3D problem to a 1D pure

radial problem i.e. phenomena in the perpendicular di-

rection are considered negligible. The discretization

method is the same proposed by [12]; the radius has been

discretized through a grid of nodes, around which the

control volumes have been built. The volume surface of

two adjacent nodes is in common and it is through this

surface that the fluxes are evaluated. This method has

the main advantage of preserving the conservation

equations in every volume, regardless of the volume

shape and dimension.

In particular the hollow cylinder has been discretized

through 11 volumes; this number has been chosen as a

good compromise between the time required for calcu-

lation and the accuracy of results. A greater number of

volumes has not given significant improvements in the

results, though the time required for the solution of the

system of equations slightly increases. The differential-

algebraic system has been finally solved through the

well-known DASSL algorithm [25]. Concerning the time

step adopted, the DASSL algorithm implemented in

Scilab, does not require a specific definition of Dt. Time

step size is calculated according to predictor–corrector

criteria; this leads to an increased velocity in the con-

vergence. Further details are given in e.g. [25].

3.2.2. Numerical results

Numerical results at time stations t ¼ 10, 20, 30, 40,

50, 60 h are here presented.

Below the boiling point of water, mass transport in

concrete is quite low due to the not so strong pressure

gradients. Free moisture, both vapour and liquid, tends
to migrate towards the colder zones, and a consequent

increase in liquid saturation and liquid water is present

in the external layers of the cylinder.

When concrete temperature surpasses the conven-

tional limit of 378.15 K i.e. 105 �C (at this temperature

free water is considered to be no longer present in con-

crete), all the phenomena become more important.

Free liquid water boils off and the dehydration pro-

cess begins with a strong mass loss and, as a conse-

quence, a rapid evolution of the physical characteristics

of the material. Due to the increased pressure gradient,

the free moisture tends to diffuse towards the colder

zones of the hollow cylinder. Being concrete perme-

ability very low to water vapour, and even lower to

liquid water, moisture cannot escape as rapidly as it

is released, and the pore pressure rises substantially

(Fig. 3).

The maximum pressure peak increases gradually up

to about 3 atm at t ¼ 38 h i.e. when the maximum

temperature is reached. The desaturation front, which

corresponds to the gas pressure peak (Fig. 4), migrates

towards the external colder layers of the cylinder as the

heat front moves inside concrete (Fig. 6). At the same

time, water content and saturation increase in the zones

behind the front.

All these phenomena are coupled with the evolution

of the microstructure. The model does not take into

account mechanical aspects, and in particular the dam-

aging effect i.e. microcracks caused by differential ther-

mal expansion are not modelled. The evolution of mass/

heat transport properties are taken into account through

porosity (Eq. (M-6)) and permeability evolution (Eq.

(C-26)). Dehydration decomposes concrete and modifies

microstructure geometry i.e. porosity augments with

rising temperature (Fig. 5). Once completed the heating

phase, the temperature field becomes stationary after
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t ¼ 60 h, while the evolution of the other fields contin-

ues. Once ceased the water creation due to dehydration,

the gas pressure peak reduces while continuing its mi-

gration, and saturation/water content decreases gradu-

ally due to moisture transport.

3.3. Experimental and numerical results: comparison

Temperature profiles show a good correlation with

experimental results. During the transitory phase, some

differences are present due to a non-uniform heating in

the most external slice of the sample: i.e. day–night cy-

cles had a non-negligible influence during the heating of

the cylinder. As expected, these small perturbations are

not appreciable at equilibrium (Figs. 7–9). The physical

phenomena occurring inside the cylinder are character-

ized by a front of desaturation and a migration of water
towards the colder zones, while at the same time a

change of the parameters is observed moving towards

the inner side of the structure (e.g. see Fig. 5 or 6). As it

could be expected, the greatest changes are located in the

area closer to the heat source, where temperature and

pressure reach the highest values. Desaturation is pre-

sent in spite of the high water production that takes

place when the temperature is above 378.15 K due to

concrete dehydration; desaturation is caused by a rapid

evaporation of water, resulting in formation of a zone of

increased water vapour content. As expected the maxi-

mum peak of vapour pressure moves towards the ex-

ternal colder part of the cylinder, following the free

moisture migration.

Lacking the data of the pressure gauge at 9 cm from

the heated surface, a comparison between the numerical
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Fig. 8. Temperature vs. radius at t ¼ 40 h.
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Fig. 10. Numerical and experimental gas pressure on sensor 1

(3 cm).
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Fig. 11. Numerical and experimental gas pressure on sensor 3

(16 cm).
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and the experimental results is possible only on the three

remaining sensors. Correlation is good, though on the

third sensor placed at 16 cm a low pressure is measured

(Figs. 10–12).

Many reasons can be given for explaining the non-

perfect correspondence between experimental and nu-

merical results on pressure field. The phenomena inside

concrete, when high temperatures occur, are rather

complex and it is not easy to measure and reproduce

them. The measurements have been probably affected by

a non-perfect installation and/or the influence the sen-

sors have on the behaviour of concrete. Moreover the

proposed model is relatively simple; the use of specific

phenomenological laws for the high performance con-

crete used in the experimental test should improve the

quality of results. Being these tests on the material quite

expensive, some general equations for concrete have

been adopted e.g. Eq. (C-9).
Nevertheless the model is able to predict, even if only

qualitatively, the global behaviour of concrete and the

gas pressure field.
4. Conclusions and perspectives

The developed model has allowed a qualitative de-

scription of the complex phenomena occurring in con-

crete at high temperatures. The main features of the

model are the treatment of heat transfer together with

liquid/vapour transport and air migration in the porous

media. High temperatures effects have been considered

through temperature/pressure dependance of many pa-

rameters by means of phenomenological expressions
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Fig. 12. Numerical and experimental gas pressure on sensor 4
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widely validated. An experimental set-up has been pre-

sented together with the related temperature and pore

pressure measurements. The subsequent numerical

analysis has showed qualitatively acceptable results,

comparable to the observed data, allowing a deeper

understanding of concrete at high temperatures. A fur-

ther step of this research is the evaluation of the me-

chanical performances of concrete, including damage

effects, and the implementation of the governing equa-

tions by means of a finite element procedure for more

flexibility in space discretization by the use of the Hite-

cosp code presented in e.g. [3] or [21].
Appendix A

A.1. Equations of the model

In the model it has been chosen to introduce 11

variables: d, ma, u, mv, ml, pv, pa, pl, /, Sl, T .
It is clear that this number can be easily reduced.

Despite this it has been chosen not to reduce the system

in order to preserve the readability of the system and the

possibility of easily substituting one or more of the

equations.

_uuþ divðhaF a þ hvF v þ hlF l þ qðT ÞÞ ¼ 0 ðM-1Þ

_mma þ divðF aÞ ¼ 0 ðM-2Þ

_mmw � _dd þ divðF l þ F vÞ ¼ 0 ðM-3Þ

_dd ¼ � 1

s
ðd � deqðT ÞÞ ðM-4Þ

u ¼ mauaðT Þ þ mvuvðT Þ þ mlulðT Þ þ ðm0
hyd � 6dÞuhydðT Þ

þ ðm0
an þ 5dÞuanðT Þ þ maguagðT Þ ðM-5Þ
/ ¼ /0 þ 0:72 � 10�3d ðM-6Þ

pa þ pv � pl ¼
rðT Þ
rðT0Þ

acðS�bc
l � 1Þ 1� 1

bcð Þ ðM-7Þ

ma ¼ qa/ð1� SlÞ ðM-8Þ

mv ¼ qv/ð1� SlÞ ðM-9Þ

ml ¼ ql/Sl ðM-10Þ

pl ¼ psatðT Þ þ
qlRT
Ml

ln
pv

psatðT Þ

� �
ðM-11Þ

The main system is completed by an appropriate

system of complementary equations describing the dif-

ferent phases and their properties. The saturation pres-

sure can be calculated from the Clausius–Clapeyron

equation (C-1) or from empirical correlations e.g. the

Hyland–Wexler formula.

psatðT Þ ¼ patm exp
DH
R

T � 373:15

373:15T

� �
ðC-1Þ

The surface tension gives the equilibrium tension

between liquid water and gas inside pores. The following

expression has been retained [26]

rðT Þ ¼ r0 1

�
� T
Tcr

�nr

ðC-2Þ

Enthalpies per unit mass are defined according to the

classical definition:

hp ¼ up þ
pp

qp

ðC-3Þ

Concerning the air and vapour fluxes some remarks

must be made. The law describing the moisture trans-

port in porous media is Fick’s law associated with

Darcy’s law. These laws are separately well known, and

the choice in favour of either a molar or a mass averaged

mixture velocity formulation varies from author to au-

thor. This choice is often given without any explicit

reasoning. Mainguy in [18] and [12] gives thermody-

namic arguments for the choice of a molar based for-

mulation. Flux equations are therefore the following:

F a ¼ �qa

kðT ÞkrgðSlÞ
ggðT Þ

gradðpa

"
þ pvÞ

þ 1

�
þ pv
pa

�
gDgrad

pa
pa þ pv

� �#
ðC-4Þ

F v ¼ qv

�kðT ÞkrgðSlÞ
ggðT Þ

gradðpa

"
þ pvÞ

þ 1

�
þ pa
pv

�
gDgrad

pa
pa þ pv

� �#
ðC-5Þ

F l ¼
ql

glðT Þ
kðT ÞkrlðSlÞgradðplÞ ðC-6Þ
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Heat flux is given by:

qðT Þ ¼ �kgradðT Þ ðC-7Þ

The effective diffusion coefficient of vapour inside the

pores of partially saturated concrete varies with satu-

ration, temperature and gas pressure changes, and may

be described as [22,27–29]:

Dð/; Sl; T ; pgÞ ¼ /ð1� SlÞAvD0

T
T0

� �Bv p0
pg

ðC-8Þ

In the chosen formulation, thermal conductivity of

partially saturated concrete depends on the sole tem-

perature. The Eurocode4 definition has been retained:

this general equation is considered to take into account

also condensation/vapourization influence on thermal

conductivity:

kðT Þ ¼ 2� 0:24
T � 273

120

� �
þ 0:012

T � 273

120

� �2

ðC-9Þ

Internal energy of air and internal energy of water

vapour are defined by means of the ideal gas assump-

tion:

uaðT Þ ¼ CaT ðC-10Þ

uvðT Þ ¼ CvT ðC-11Þ

Internal energy of liquid water, ul, is defined as fol-

lows [20]:

ulðT Þ ¼ 4480ðT � T0Þ � 5:86� 10�7 1

T � 715

�
� 1

T0 � 715

�

þ 2:652� 105 ln
T � 715

T0 � 715

� �
þ u0l ðC-12Þ

Harmathy [20] gives an approximated expression for

concrete components (hydrate/anhydrous/aggregate)

massive heat. Starting from this expression and consid-

ering hydrate as composed by CSH at 75% and port-

landite at 25% [19], the following expression for hydrate

energy has been obtained:

uhydðT Þ ¼ 946:6ðT � T0Þ þ
0:453

2
ðT 2 � T 2

0 Þ

� 150� 105
1

T

�
� 1

T0

�
þ u0hyd ðC-13Þ

The anhydrous is considered formed by C2S [9]. The

following expression has been obtained:

uanðT Þ ¼ 838:9ðT � T0Þ þ
252� 10�4

2
ðT 2 � T 2

0 Þ

� 14:13� 106
1

T

�
� 1

T0

�
þ u0an ðC-14Þ
Baroghel [19] gives also an expression for the aggre-

gate energy:

uagðT Þ ¼ 180ðT � T0Þ þ
0:09

2
ðT 2 � T 2

0 Þ þ u0ag ðC-15Þ

Internal energy equation (M-5) can be rearranged in

the following form:

u ¼ mauaðT Þ þ mvuvðT Þ þ mlulðT Þ þ m0
hyduhydðT Þ

þ m0
anuanðT Þ þ maguagðT Þ þ d½�6ðuhydðT Þ

� uhydðT0ÞÞ þ 5ðuanðT Þ � uanðT0ÞÞ þ ulðT0Þ

� d½6uhydðT0Þ � 5uanðT0Þ � ulðT0Þ
 ðC-16Þ

Internal energy of aggregates, anhydrous and hy-

drates at reference state cannot be directly measured.

Though, it is possible to measure experimentally a re-

lationship among these variables. Aggregate energy at

reference state is considered negligible. The difference

between the internal energies of hydrates and the inter-

nal energies of anhydrous and water at the reference

temperature gives the constant d whose value can be

experimentally determined:

d ¼ 6u0hyd � 5u0an � u0l ¼ 2:5� 106 J kg�1 ðC-17Þ

d represents the required energy for the dehydration of

CSH at the reference temperature.

We can therefore obtain the following expression for

internal energy:

u ¼ mauaðT Þ þ mvuvðT Þ þ mlulðT Þ þ m0
hyduhydðT Þ

þ m0
anuanðT Þ þ maguagðT Þ þ d½�6ðuhydðT Þ

� uhydðT0ÞÞ þ 5ðuanðT Þ � uanðT0ÞÞ þ ulðT0Þ
 � dd

ðC-18Þ

The energy equation is defined given an additive

constant. The definition of the constant is useless as we

are interested in the variation of the internal energy.

Gas phases densities have been defined through the

well known Clapeyron equation of state for ideal gases:

qa ¼
paMa

RT
ðC-19Þ

qv ¼
pvMv

RT
ðC-20Þ

Liquid water density has been held constant; this

hypothesis is acceptable due to the relatively low at-

tained temperatures.

ql ¼ q0
l ðC-21Þ

deqðT Þ defines the water mass created at equilibrium;

mass loss is reproduced through an exponential func-

tion, which is supposed a function of the sole tempera-

ture [9]:
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deqðT Þ ¼
7:5

100
meqð378 KÞ 1

�
� exp

�
� T � 378

200

��
� HðT � 378Þ ðC-22Þ

The porous space in concrete has a very complex

inner structure which influences the vapour diffusion

process. The simplest way of considering these effects is

the introduction of the structure coefficient g. It takes

into account an increase in the average path of the dif-

fusing molecules which is caused by their tortuous

course inside the pore space. Millington [30] expression

is reproposed by means of the following expression:

g ¼ /1=3ð1� SlÞ7=3 ðC-23Þ

Structure effect is taken into account also in Eq.

(C-8): the term /ð1� SlÞAv , given Av ¼ 1, can be inter-

preted as the ratio of material volume occupied by the

gas phase, while Eq. (C-23) can be interpreted as the sole

term taking into account the tortuous course of diffusing

molecules inside the pore space.

The liquid viscosity, which is considered as a function

of the temperature [31], can be approximated using the

Watson formula [32]:

glðT Þ ¼ 0:6612ðT � 229Þ�1:562 ðC-24Þ

Gas viscosity is considered temperature dependent

[9]:

ggðT Þ ¼ 3:85� 10�8T ðC-25Þ

Finally the set of equation is completed by the per-

meability relationships.

Intrinsic permeability is a material characteristic de-

scribing the penetration of gases or liquids through a

porous material due to pressure head and it is generally

determined bymeans of experimental tests usingwater or,

more often, gas. During heating of concrete at high tem-

perature complex physical and chemical processes take

place, leading to inner structure changes, porosity in-

crease and also intrinsic permeability augmentation [22].
Constant Description

a Heat exchange coefficient

AT; Ap Permeability law coefficients

Av; Bv Effective diffusion coefficients

ac; bc Capillary curve coefficients

Ca Air energy constant

Cv Vapour energy constant

D0 Diffusion coefficient

d Dehydration energy at state 0

DH Specific enthalpy of evaporation

k0 Intrinsic permeability

m0
hyd; m

0
an Unit volume mass

m0
ag Unit volume mass
In [22] Schneider and Herbst presented some results

on changes of the inner structure and permeability, re-

sulting from high temperature action, for four types of

concrete. Results of these tests, concerning the effect of

temperature and gas pressure on concrete intrinsic per-

meability, have been approximated by [21] by use of a

formula of phenomenological type:

kðT ; pgÞ ¼ k0 � 10ATðT�T0Þ pg
p0

� �Ap

ðC-26Þ

where AT and Ap are constants depending on the type of

concrete.

Intrinsic permeability is a characteristic of concrete

skeleton, though gaseous and liquid phases have a dif-

ferent behaviour inside concrete. This means that an-

other variable must be taken into consideration for

describing the penetration of gas and liquid by means of

the relative permeability. In particular Muskat and

Meres [33] recommended the phase p permeability to be

treated as isotropic and given by:

kp ¼ kkrp ðC-27Þ

The relative permeability, similarly as for most cap-

illary porous media, has been taken into consideration

adopting the Van Genuchten [34] approach:

krlðSlÞ ¼
ffiffiffiffi
Sl

p
½1� ð1� S1=n

l Þn
2 ðC-28Þ

krgðSlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� Sl

p
ð1� S1=n

l Þ2n ðC-29Þ

where n is an experimentally determined parameter (see

e.g. [18]).

A.2. Constants and initial values

In the following, the constants which have been used

in the model are presented together with initial values of

the variables used for posing the reference state 0.
Value References

8 [Wm�2 K�1] )
0.05 [–]; 0.368 [–] [21]

1 [–]; 1.667 [–] [14,35,36]

46.9364 [MPa]; 2.0601 [–] [19]

717 [J kg�1 K�1] [15]

1418 [J kg�1 K�1] [15]

2.55e�5 [m2 s�1] [21]

2.5 · 106 [J kg�1] )
39583.85 [Jmol�1] [15]

2 · 10�17 [m2] )
420 [kgm�3]; 0 [kgm�3] [19]

1400 [kgm�3] [19]
(continued on next page)



Constant Description Value References

meq Equilibrium mass 210 [kgm�3] [9]

Ml; Mv Molar mass 0.018 [kgmol�1] [15]

Ma Molar mass 0.029 [kgmol�1] [15]

n Relative permeability constant 0.51 [–] [34]

nr Surface tension coefficient 1.26 [–] [26]

patm Atmospheric pressure 101325 [Pa] )
R Universal gas constant 8.317 [Jmol�1 K�1] [15]

RH Relative humidity 0.5 [–] )
q0
l Water density 998 [kgm�3] [15]

r0 Surface tension 155.8· 10�3 [Nm�1] [26]

s Characteristic time of dehydration 10800 [s] [9]

T1 Temperature in the far field 293.15 [K] )
Tcr Critic temperature 647.15 [K] )
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Finally variables values at reference state are here

presented:

The remaining variable initial values are calculated

by substitution into the algebraic equations of the main

system presented (M-5)–(M-11).

Variable Value

T0 293.15 [K]

d0 0 [kgm�3]

/0 0.1 [–]

p0a þ p0v 101325 [Pa]

p0v 1300 [Pa]
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de ciment, Presse de l’ENPC, Paris, 1982.



S. Dal Pont, A. Ehrlacher / International Journal of Heat and Mass Transfer 47 (2004) 135–147 147
[24] A. Abbas, M. Carcasses, J. Ollivier, Gas permeability of

concrete in relation to its degree of saturation, Mater.

Struct. 32 (1999) 3–8.

[25] L. Petzold, in: R.S. Stepleman et al. (Eds.), A Description

of DASSL: A Differential/Algebraic System Solver, Am-

sterdam, 1983.

[26] B. Le Neindre, Tensions superficielles des compos�ees
inorganiques et des m�eelanges, Techniques de l’ing�eenieur,

1993, article K476.

[27] P. Perre, A. Degiovanni, Simulation par volumes finis des

transfers coupl�ees en milieux poreux anisotropes: s�eechage du
bois �aa basse et �aa haute temp�eerature, Int. J. Heat Mass

Transfer (33) (1990) 2463–2478.

[28] P. Baggio, C. Bonacina, M. Strada, Trasporto di calore e di

massa nel calcestruzzo cellulare, La Termotecnica (12)

(1993) 53–60.

[29] J. Selih, A. Sousa, T. Bremner, Moisture transport in

initially fully saturated concrete during drying, Transport

Porous Media (24) (1996) 81–106.
[30] R. Millington, Gas diffusion in porous media, Science (130)

(1959) 100–102.

[31] R. Reid, J. Praunsnitz, E. Bruce, The Properties of Gases

and Liquids, McGraw Hill, New York, 1987.

[32] H. Thomas, M. Sansom, Fully coupled analysis of heat,

moisture and air transfer in unsaturated soil, J. Eng. Mech.

(121) (1995) 392–405.

[33] M. Muskat, M. Meres, The flow of heterogeneous

fluids through porous media, Physics (7) (1936) 346–

363.

[34] M. Van Genuchten, A closed-form equation or predicting

the hydraulic conductivity of unsaturated soils, Sci. Soc.

Am. J. 44 (1980) 892–898.

[35] P. Forsyth, R. Simspon, A two phase two component

model for natural convection in a porous medium, Int. J.

Numer. Meth. Fluids (12) (1991) 665–682.

[36] E. Mason, L. Monchick, Survey of the equation of state

and transport properties of moist gases, Humid. Moist.

Measure. Control Sci. (3) (1965) 257–272.


	Numerical and experimental analysis of chemical dehydration, heat and mass transfers in a concrete hollow cylinder submitted to high temperatures
	Introduction
	The mathematical model
	Microstructure description
	Mass conservation
	Energy equations
	Initial and boundary conditions

	Results and discussion
	The experimental set-up
	Numerical results
	Numerical method
	Numerical results

	Experimental and numerical results: comparison

	Conclusions and perspectives
	Equations of the model
	Constants and initial values
	Appendix A
	References


